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Motivation

Since Cogley and Sargent (2002), time-varying parameters (TVP) models have
been widely used in macroeconomics for investigating the dynamics of key
macroeconomic aggregates:

1 TVP models have been used for policy evaluation (Primiceri, 2006) and it
has been shown to provide good forecasts (D’Agostino et al., 2013).

2 The literature on forecasting under parameters instability has been growing
fast in the last decades; see Stock and Watson (1996), Pesaran and Pick
(2011) and Giraitis et al (2013) ⇒ optimal weighting.

The interest in TVP models can be traced back in other fields:

1 In the adaptive control and engineering literature there is a long tradition on
the use of discount regression and forgetting factors algorithms (Brown,
1963, Fagin, 1964 and Jazwinski, 1970).

2 Ljung and Soderstrom (1985) derive recursive formulations of a variety of
adaptive algorithms for quadratic criterion functions and interpret them as
a stochastic approximation of the Gauss-Newton algorithm.

Since Marcet and Sargent (1989), the adaptive algorithms have been used to
describe the learning mechanism of the expectations’ formation.
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This paper

This paper proposes a new adaptive algorithm that builds on recent developments
of the score-driven models ⇐ Creal et al. (2012) and Harvey (2013).

The adaptive algorithm for TVP models extends the traditional ones of Ljung and
Soderstrom (1985) along various dimensions:

1 it considers how the existing algorithms are to be modified in the presence of
heavy tails (Normal and Student-t are considered) ⇐ Curdia et al (2013)

2 it introduces time-variation in volatility, emphasizing how this interacts with
the coefficients’ updating rule ⇐ Justiniano and Primiceri (2013)

3 it shows how to impose restrictions so that the model is locally stationary and
has a bounded mean ⇐ Projection facility, see Evans and Honkapohja (2001)

Application to the US inflation leads to the following results:

1 allowing for heavy-tails leads to a significant improvement in forecasting ⇒ it
is crucial in order to obtain well-calibrated density forecasts

2 the inclusion of bounds on the long-run trend imposes a discipline so that
forecasts are (marginally) improved
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Score-driven model

1 The time-varying parameters model considered here is

yt = x′tφt|t−1 + εt , εt ∼ IID(0, σ2
t|t−1), t = 1, ..., n.

where xt = (1, yt−1, ..., yt−p)′, ft|t−1 = (φ′t|t−1, σ
2
t|t−1)′.

2 The driving process is represented by the score of the conditional distribution

ft+1|t = ω + Aft|t−1 + Bst , st = I−1t Ot ,

Ot =
∂`t
(
yt |Yt−1, θ, ft|t−1

)
∂ft|t−1

, It = −E

[
∂2`t

(
yt |Yt−1, θ, ft|t−1

)
∂ft|t−1∂f

′
t|t−1

]
.

3 In the observation-driven framework, the vector ft+1, although stochastic is
perfectly predictable at time t, thus we denote ft+1|t as the filter estimate

4 The driving mechanism depends upon past observations only ⇒ i.e. a single
source of error model

5 Why the score? A stochastic version of the Gauss-Newton searching direction
for the parameters’ variation ⇒ the score inherits the properties of the
distribution of the innovations εt
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Recursions under Gaussian distribution

The conditional log-likelihood of yt is

`t = −1

2
log (2π)− 1

2
log σ2

t|t−1 −
1

2

ε2t
σ2
t|t−1

.

1 We parameterize the model so that A = I such that the the parameters
follow a random walk-type law of motionand and we restrict B to depends
upon two scalar parameters κφ and κσ

2 We end up with the following recursions:

φt+1|t = φt|t−1 + κφR
−1
t xtσ

−2
t|t−1(yt − x′tφt|t−1)

Rt = Rt−1 + κh(xtσ
−2
t|t−1x

′
t − Rt−1)

σ2
t+1|t = σ2

t|t−1 + κσ(ε2t − σ2
t|t−1)

the scaling matrix has been replaced by its smoothed version Rt

3 This generalises the exponential smoothing when regressors are included
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Relation with the learning algorithms

If we assume σ2
t|t−1 = σ2 and κφ = κh, the recursions of our model collapse to

the Constant Gain Learning (CGL) algorithm of Sargent and William (2005).
1 Lemma 1: the CGL can be obtained from a Kalman filter (KF) by imposing

particular restrictions on the state space model ⇒ those restrictions imply
that the parameter-driven model collapses to an obervation-driven model.

2 Lemma 2: the CGL implies a that past observations are weighted with
exponentially decay factor (1− κ)j , the engineering literature refers to the
constant forgetting factor ⇐ Koop and Korrobilis (2012).

3 Lemma 3: other restrictions (on the state space model) has been proposed in
the literature ⇒ all of them imply that the parameter-driven model collapses
to an observation-driven model and the KF converges to a particular
score-driven filter ⇐ Stock and Watson (1996), Sargent and William (2005),
Li (2008) and Evans et al (2010).

4 Remark 4: the CGL can be seen as a recursive solution for quadratic loss
function criterion and it leads to a stochastic analog of the recursive
Gauss-Newton search direction ⇐ Ljung and Soderstrom (1985)
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Student-t distribution

The conditional log-likelihood is

`t = c (η)− 1

2
lnσ2

t|t−1 −
(
η + 1

2η

)
ln

[
1 +

η

1− 2η

ε2t
σ2
t|t−1

]
,

where c (η) is a constant and υ = 1/η are the degree of freedoms.

1 The distribution has a clear impact on the TVP’s dynamics, in fact the two
scaled-scores are

sφt =
(1− 2η) (1 + 3η)

(1 + η)
(xtσ

−2
t|t−1x

′
t)
−1xtσ

−2
t|t−1wtεt ,

sσt = (1 + 3η) (wtε
2
t − σ2

t|t−1).

2 The weights wt = (1+η)
(1−2η+ηζt) , where ζt = ε2t /σ

2
t|t−1 ⇒ the variance affects

the conditional mean

3 This leads to a double weighting schema ⇒ across obs and across time.
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Weighting across realizations
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Double weighting schema

As example we consider the time-varying mean and variance only

yt = µt|t−1 + εt , εt ∼ tυ(0, σ2
t|t−1),

µt+1|t = µt|t−1 + κµsµt , σ2
t+1|t = σ2

t|t−1 + κσsσt .

1 The implied filter for the mean is

µt+1|t =
θ

1− (1− θwt)L
ỹt = θ

∞∑
j=0

γj ỹt−j ,

with θ =
κµ(1−2η)(1+3η)

(1+η) and ỹt = wtyt , providing that |1− θwt | < 1.
2 We have a double weighting schema: across realizations regulated by wt and

across time depending on γj , where

γ0 = 1, γj =

j−1∏
k=0

(1− θwt−k).

3 The estimated variance is σ2
t+1|t = ξ

∑∞
j=0(1− ξ)j ε̃2t−j , with ξ = κσ (1 + 3η)

and ε̃2t = wtε
2
t .

4 We have one-sided low-pass filters on ỹt = wtyt and ε̃2t = wtε
2
t , respectively.

The transfer function for the mean has TVP implying a TV spectral density;
see Dahlhaus (2012).
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Model restrictions

Often we may want to impose restrictions on the parameters space ⇒ this is
achived by re-parameterizing the model:

1 In a score-driven approach we need to define the transf. fne ft = g (̃ft), where

ft is the original vector of par. (we want to restrict), f̃t is the transf. vector
(unrestricted) and g(.) is a continous and twice diff. function (link function)

2 As a consequence, the model is expressed wrt f̃t and the scaled-score is

s̃t = (Ψ′tItΨt)
−1Ψ′tOt ,

where Ψt =
∂ft|t−1

∂ f̃′
t|t−1

is the Jacobian of g(.)⇒ re-weights the Gauss-Newton

search so that restrictions are satisfied ⇒ optimal way to implement the
projection facility

The transformation function g(.) imposes (possibly) non-linear restrictions.
However, the dynamic of the unrestricted parameters is still conditional linear

Proposition 5: under Gaussian dist and with restrictions on the parameter-driven
model (Lemma 1) ⇒ the Extended KF leads exactely to the score-driven filter.
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Imposing stationary coefficients

1 We re-parametrize the model wrt to the partial autocorrelations (PACs).

2 For each time t, the coefficients φt ∈ Sp
t , where Sp

t is the hyperplane with
stat roots, i.e. φt(zt) 6= 0, where zt = (z1t , ..., zpt) ∈ Cp and |zjt | < 1.

3 We consider φt = (φ1t , ..., φpt)
′, the corresponding PACs πt = (π1t , ..., πpt)

′

and the unrestricted parameters αt = (α1t , ..., αpt)
′.

4 There is a unique function mapping the AR coeffs to the PACs that is
φt = Φ(πt)⇒ the DL algorithm; see Bandorff-Nielsen and Schou (1973)

5 A stationary AR process has that πjt ∈ (−1, 1), thus we define another
function πt = Υ(αt), such that |πjt | < 1; e.g. inverse Fisher transf

6 We finally have the mapping between the stationary coeffs and the
unrestricted parameters, i.e. φt = g(αt) = Φ[Υ(αt)], where αt∈ (−∞,∞),
πt ∈ (−1, 1) and φt ∈ Sp.
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The Jacobian of the DL mapping function

The Jacobian of inverse Fisher transf. is straightforward, while a novel expression
for Γt = ∂φt/∂π

′
t is derived ⇒ the last iteration of the recursion

Γk,t =

[
Γ̃k−1,t bk−1,t
0′k−1 1

]
, Γ̃k−1,t = Jk−1,tΓk−1,t , k = 2, ..., p,

where Γ1,t = 1, J1,t = (1− π2t) and

bk−1,t = −


φk−1,k−1t

φk−2,k−1t
...

φ2,k−1t

φ1,k−1t

 , Jk−1,t =


1 0 · · · 0 −πkt
0 1 0 −πkt 0
...

. . .
...

0 −πkt 0 1 0
−πkt 0 · · · 0 1

 .

if k is even the central element of Jk−1,t is (1− πkt).
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Imposing bounded mean

We may want to discipline the algorithm so to have a bounded mean:

µt =
φ0t

1−
∑p

j=1 φjt
∈ (a; b).

We impose the following transformation

φ0t =
a + b exp(α0t)

1 + exp(α0t)

1−
p∑

j=1

φj,t

 ,

and the Jacobian of this transformation is also derived.

Delle Monache and Petrella (2013) Adaptive Models and Heavy Tails 9-11 January, 2014 13 / 24



Imposing bounded mean

We may want to discipline the algorithm so to have a bounded mean:

µt =
φ0t

1−
∑p

j=1 φjt
∈ (a; b).

We impose the following transformation

φ0t =
a + b exp(α0t)

1 + exp(α0t)

1−
p∑

j=1

φj,t

 ,

and the Jacobian of this transformation is also derived.

Delle Monache and Petrella (2013) Adaptive Models and Heavy Tails 9-11 January, 2014 13 / 24



Application to the US inflation

We model the quarterly US CPI inflation 1955q1:2012q4

πt = φ0,t + φ1,tπt−1 + ...+ φp,tπt−p + εt , εt ∼ IID(0, σ2
t )

Normal
Trend Trend-B AR(1) AR(1)-B AR(2) AR(2)-B AR(4) AR(4)-B

κc 0.3367 0.3547 0.0407 0.0387 0.0479 0.0286 0.0325 0.0239
(0.0480) (0.0190) (0.0048) (0.0039) (0.0027) (0.0029) (0.0028) (0.0021)

κσ 0.1479 0.1910 0.1127 0.1341 0.1044 0.1484 0.0806 0.1036
(0.0277) (0.0189) (0.0180) (0.0225) (0.0128) (0.0293) (0.0064) (0.0142)

LogLik -561.9535 -573.3571 -546.0505 -535.0638 -554.6153 -535.9258 -555.9525 -539.2061
AIC 1131.9071 1154.7142 1102.1009 1080.1277 1121.2306 1083.8516 1127.9050 1094.4123
BIC 1146.1498 1168.9570 1119.9044 1097.9311 1142.5946 1105.2156 1156.3905 1122.8977

Student-t
Trend Trend-B AR(1) AR(1)-B AR(2) AR(2)-B AR(4) AR(4)-B

κc 0.5415 0.1841 0.0452 0.0367 0.0310 0.0366 0.0413 0.0286
(0.0115) (0.0058) (0.0035) (0.0038) (0.0013) (0.0043) (0.0043) (0.0025)

κσ 0.1632 0.2461 0.1445 0.2046 0.1620 0.1804 0.1520 0.1789
(0.0105) (0.1131) (0.0096) (0.0633) (0.0116) (0.0497) (0.0505) (0.0122)

υ 5.7577 4.8640 4.5656 5.3994 5.3317 5.0520 4.6766 4.8111
(0.0876) (0.4650) (0.0827) (0.4189) (0.0675) (0.4380) (0.4650) (0.0808)

LogLik -521.8818 -548.3469 -513.6383 -512.7556 -519.5567 -514.3814 -515.5358 -508.2651
AIC 1053.7637 1106.6937 1039.2766 1037.5111 1053.1134 1042.7628 1049.0716 1034.5302
BIC 1071.5671 1124.4972 1060.6407 1058.8752 1078.0381 1067.6876 1081.1177 1066.5763
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Long-run trend
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Inflation Persistence: sum of ARs coeffs
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Volatility
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Point Forecast 1984q1–2012q4

RMSFE MAFE
h=1 h=4 h=8 h=1 h=4 h=8

Normal
Trend 2.2259 2.4902 2.4748 1.3787 1.6961 1.8652

— — — — — —
Trend-B 0.8550 0.8444 0.8665 0.8909 0.8537 0.8391

(0.0314) (0.0071) (0.1668) (0.0677) (0.0396) (0.0649)
AR(1) 0.9294 0.8547 0.9097 0.9648 0.8921 0.8703

(0.3795) (0.0423) (0.4582) (0.6312) (0.1934) (0.2954)
AR(1)-B 0.9131 0.8052 0.8137 0.9413 0.7723 0.7381

(0.2868) (0.0048) (0.1117) (0.4127) (0.0014) (0.0152)
AR(2) 0.9446 0.8224 0.7996 0.9629 0.8040 0.7589

(0.1138) (0.0040) (0.0613) (0.4258) (0.0018) (0.0142)
AR(2)-B 0.9603 0.8426 0.7949 0.9535 0.8031 0.7388

(0.4839) (0.0037) (0.0620) (0.4545) (0.0013) (0.0113)
AR(4) 0.9627 0.8466 0.8116 0.9368 0.8147 0.7536

(0.4609) (0.0054) (0.0539) (0.2372) (0.0054) (0.0073)
AR(4)-B 0.9307 0.8562 0.8095 0.9042 0.8319 0.7599

(0.0745) (0.0053) (0.0650) (0.0818) (0.0065) (0.0114)

Student-t
Trend 0.9687 0.9345 0.9174 0.9331 0.9290 0.8977

(0.6436) (0.0742) (0.3665) (0.3487) (0.0999) (0.2410)
Trend-B 0.9276 0.8849 0.9056 0.9338 0.9064 0.8650

(0.2899) (0.0306) (0.3999) (0.4150) (0.1929) (0.2106)
AR(1) 0.8846 0.8422 0.8971 0.9288 0.8657 0.8367

(0.0729) (0.0238) (0.4062) (0.2997) (0.1379) (0.1853)
AR(1)-B 0.8722 0.8108 0.8387 0.8943 0.8056 0.7684

(0.1122) (0.0068) (0.1779) (0.1587) (0.0099) (0.0372)
AR(2) 0.9451 0.8893 0.9293 0.9442 0.8584 0.8482

(0.1081) (0.0174) (0.5327) (0.2302) (0.0125) (0.1081)
AR(2)-B 0.8712 0.7970 0.8079 0.9147 0.7835 0.7468

(0.0813) (0.0035) (0.1154) (0.1790) (0.0021) (0.0238)
AR(4) 0.9435 0.8429 0.8398 0.9369 0.8355 0.7815

(0.1996) (0.0104) (0.1052) (0.2771) (0.0322) (0.0088)
AR(4)-B 0.9413 0.8480 0.8270 0.9239 0.8258 0.7733

(0.1603) (0.0092) (0.0634) (0.1878) (0.0173) (0.0053)
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Density forecast: a quick overview

We want to assess how a conditional density forecast approximates the ”true”
density forecast:

1 The log-score: the density forecast is evaluated at the realization yt+h and it
gives higher score to the density forecast with higher prob of yt+h.

2 Density forecasts are ranked according to the log-score and test for the
difference between log-scores by Amisano and Giacomini (2007).

3 PIT (Prob Integral Transf): the cdf of candidate density is evaluated at
yt+h ⇒ we have good approx of the ”true” density if the PITs are IIDU(0,1).

4 Diebold (1998): visual inspection of histogram of the PITs to be U(0,1).

5 Berkowitz (2001) computes the inverse normal cdf transf and then test for
NID by fitting an AR(1) with intercept and then test LR3

6 Rossi and Sekhposyan (2013) propose a non-parametric test that considers
parameters uncertainty.
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Density forecast

Normal Student-t
Av Log Score LR κCSα,P Av Log Score LR κCSα,P

Trend -2.8237 0.0001 5.7760 -1.5999 0.5694 0.9923

Trend-B -3.0188 0.0001 6.6422 -1.6353 0.0124 1.5210

AR(1) -2.7127 0.0055 4.0960 -1.6065 0.6715 0.1322

AR(1)-B -2.6537 0.3831 4.7610 -1.6223 0.5172 0.5760

AR(2) -2.7784 0.0129 4.7610 -1.6145 0.1988 1.1560

AR(2)-B -2.6932 0.0121 4.7610 -1.6146 0.3501 0.4623

AR(2) -2.9495 0.1794 4.4223 -1.6313 0.2424 0.9923

AR(4)-B -2.7859 0.0822 4.0960 -1.6603 0.1826 0.9923

Delle Monache and Petrella (2013) Adaptive Models and Heavy Tails 9-11 January, 2014 20 / 24



Density forecast: inspection of the PITs
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Density forecast: inspection of the PITs–RS test
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Pairwise comparison. Forecasting sample 1973q1–2012q4

Normal Student-t
Trend Trend-B AR(1) AR(1)-B AR(2) AR(2)-B AR(4) AR(4)-B Trend Trend-B AR(1) AR(1)-B AR(2) AR(2)-B AR(4)

Normal
Trend-B 0.003
AR(1) 0.018 0.000
AR(1)-B 0.033 0.000 0.167
AR(2) 0.158 0.000 0.183 0.101
AR(2)-B 0.024 0.000 0.741 0.605 0.025
AR(4) 0.077 0.460 0.008 0.010 0.021 0.008
AR(4)-B 0.548 0.003 0.298 0.148 0.893 0.141 0.003

Student-t
Trend 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Trend-B 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.526
AR(1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.882 0.569
AR(1)-B 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.666 0.826 0.670
AR(2) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.721 0.703 0.832 0.879
AR(2)-B 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.750 0.697 0.804 0.858 0.998
AR(4) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.490 0.950 0.639 0.883 0.670 0.771
AR(4)-B 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.243 0.717 0.351 0.557 0.331 0.452 0.190
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Summary and future research

1 We propose a score-driven approach for TVPs models and we concentrate on
the AR model

2 We show how the implied algorithms are related to the learning algorithms

3 We extend existing adaptive algorithms to the case of changes in volatility
and heavy-tails based on the score-driven criterion

4 We show how to impose restrictions on the time-varying parameters

5 Application to the US inflation leads to interesting results in fitting and
forecasting ⇒ the effects of Student-t distribution for density forecast

6 Future research: multivariate VARs and skew-t distribution
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