Adaptive Models and Heavy Tails

Davide Delle Monache¹ and Ivan Petrella²

¹Queen Mary, University of London ²Birkbeck, University of London and CEPR

Workshop on Dynamic Models driven by the Score of Predictive Likelihoods. Tenerife, 9-11 January 2014

Since Cogley and Sargent (2002), time-varying parameters (TVP) models have been widely used in macroeconomics for investigating the dynamics of key macroeconomic aggregates:

- TVP models have been used for policy evaluation (Primiceri, 2006) and it has been shown to provide good forecasts (D'Agostino et al., 2013).
- O The literature on forecasting under parameters instability has been growing fast in the last decades; see Stock and Watson (1996), Pesaran and Pick (2011) and Giraitis et al (2013) ⇒ optimal weighting.

The interest in TVP models can be traced back in other fields:

- In the adaptive control and engineering literature there is a long tradition on the use of discount regression and forgetting factors algorithms (Brown, 1963, Fagin, 1964 and Jazwinski, 1970).
- Ljung and Soderstrom (1985) derive recursive formulations of a variety of adaptive algorithms for quadratic criterion functions and interpret them as a stochastic approximation of the Gauss-Newton algorithm.

Since Cogley and Sargent (2002), time-varying parameters (TVP) models have been widely used in macroeconomics for investigating the dynamics of key macroeconomic aggregates:

- TVP models have been used for policy evaluation (Primiceri, 2006) and it has been shown to provide good forecasts (D'Agostino et al., 2013).
- O The literature on forecasting under parameters instability has been growing fast in the last decades; see Stock and Watson (1996), Pesaran and Pick (2011) and Giraitis et al (2013) ⇒ optimal weighting.

The interest in TVP models can be traced back in other fields:

- In the adaptive control and engineering literature there is a long tradition on the use of discount regression and forgetting factors algorithms (Brown, 1963, Fagin, 1964 and Jazwinski, 1970).
- Ljung and Soderstrom (1985) derive recursive formulations of a variety of adaptive algorithms for quadratic criterion functions and interpret them as a stochastic approximation of the Gauss-Newton algorithm.

Since Cogley and Sargent (2002), time-varying parameters (TVP) models have been widely used in macroeconomics for investigating the dynamics of key macroeconomic aggregates:

- TVP models have been used for policy evaluation (Primiceri, 2006) and it has been shown to provide good forecasts (D'Agostino et al., 2013).
- O The literature on forecasting under parameters instability has been growing fast in the last decades; see Stock and Watson (1996), Pesaran and Pick (2011) and Giraitis et al (2013) ⇒ optimal weighting.

The interest in TVP models can be traced back in other fields:

- In the adaptive control and engineering literature there is a long tradition on the use of discount regression and forgetting factors algorithms (Brown, 1963, Fagin, 1964 and Jazwinski, 1970).
- Ljung and Soderstrom (1985) derive recursive formulations of a variety of adaptive algorithms for quadratic criterion functions and interpret them as a stochastic approximation of the Gauss-Newton algorithm.

Since Cogley and Sargent (2002), time-varying parameters (TVP) models have been widely used in macroeconomics for investigating the dynamics of key macroeconomic aggregates:

- TVP models have been used for policy evaluation (Primiceri, 2006) and it has been shown to provide good forecasts (D'Agostino et al., 2013).
- O The literature on forecasting under parameters instability has been growing fast in the last decades; see Stock and Watson (1996), Pesaran and Pick (2011) and Giraitis et al (2013) ⇒ optimal weighting.

The interest in TVP models can be traced back in other fields:

In the adaptive control and engineering literature there is a long tradition on the use of discount regression and forgetting factors algorithms (Brown, 1963, Fagin, 1964 and Jazwinski, 1970).

Ljung and Soderstrom (1985) derive recursive formulations of a variety of adaptive algorithms for quadratic criterion functions and interpret them as a stochastic approximation of the Gauss-Newton algorithm.

Since Cogley and Sargent (2002), time-varying parameters (TVP) models have been widely used in macroeconomics for investigating the dynamics of key macroeconomic aggregates:

- TVP models have been used for policy evaluation (Primiceri, 2006) and it has been shown to provide good forecasts (D'Agostino et al., 2013).
- O The literature on forecasting under parameters instability has been growing fast in the last decades; see Stock and Watson (1996), Pesaran and Pick (2011) and Giraitis et al (2013) ⇒ optimal weighting.

The interest in TVP models can be traced back in other fields:

- In the adaptive control and engineering literature there is a long tradition on the use of discount regression and forgetting factors algorithms (Brown, 1963, Fagin, 1964 and Jazwinski, 1970).
- Ljung and Soderstrom (1985) derive recursive formulations of a variety of adaptive algorithms for quadratic criterion functions and interpret them as a stochastic approximation of the Gauss-Newton algorithm.

Since Cogley and Sargent (2002), time-varying parameters (TVP) models have been widely used in macroeconomics for investigating the dynamics of key macroeconomic aggregates:

- TVP models have been used for policy evaluation (Primiceri, 2006) and it has been shown to provide good forecasts (D'Agostino et al., 2013).
- O The literature on forecasting under parameters instability has been growing fast in the last decades; see Stock and Watson (1996), Pesaran and Pick (2011) and Giraitis et al (2013) ⇒ optimal weighting.

The interest in TVP models can be traced back in other fields:

- In the adaptive control and engineering literature there is a long tradition on the use of discount regression and forgetting factors algorithms (Brown, 1963, Fagin, 1964 and Jazwinski, 1970).
- Ljung and Soderstrom (1985) derive recursive formulations of a variety of adaptive algorithms for quadratic criterion functions and interpret them as a stochastic approximation of the Gauss-Newton algorithm.

This paper proposes a new adaptive algorithm that builds on recent developments of the score-driven models \Leftarrow Creal et al. (2012) and Harvey (2013).

The adaptive algorithm for TVP models extends the traditional ones of Ljung and Soderstrom (1985) along various dimensions:

- It considers how the existing algorithms are to be modified in the presence of heavy tails (Normal and Student-t are considered) ⇐ Curdia et al (2013)

Application to the US inflation leads to the following results:

Illowing for heavy-tails leads to a significant improvement in forecasting ⇒ it is crucial in order to obtain well-calibrated density forecasts

the inclusion of bounds on the long-run trend imposes a discipline so that forecasts are (marginally) improved

This paper proposes a new adaptive algorithm that builds on recent developments of the score-driven models \leftarrow Creal et al. (2012) and Harvey (2013).

The adaptive algorithm for TVP models extends the traditional ones of Ljung and Soderstrom (1985) along various dimensions:

- It considers how the existing algorithms are to be modified in the presence of heavy tails (Normal and Student-t are considered) ⇐ Curdia et al (2013)
- It shows how to impose restrictions so that the model is locally stationary and has a bounded mean ⇐ Projection facility, see Evans and Honkapohja (2001)

- Illowing for heavy-tails leads to a significant improvement in forecasting ⇒ it is crucial in order to obtain well-calibrated density forecasts
- the inclusion of bounds on the long-run trend imposes a discipline so that forecasts are (marginally) improved

This paper proposes a new adaptive algorithm that builds on recent developments of the score-driven models \leftarrow Creal et al. (2012) and Harvey (2013).

The adaptive algorithm for TVP models extends the traditional ones of Ljung and Soderstrom (1985) along various dimensions:

- It shows how to impose restrictions so that the model is locally stationary and has a bounded mean ⇐ Projection facility, see Evans and Honkapohja (2001)

- Illowing for heavy-tails leads to a significant improvement in forecasting ⇒ it is crucial in order to obtain well-calibrated density forecasts
- the inclusion of bounds on the long-run trend imposes a discipline so that forecasts are (marginally) improved

This paper proposes a new adaptive algorithm that builds on recent developments of the score-driven models \leftarrow Creal et al. (2012) and Harvey (2013).

The adaptive algorithm for TVP models extends the traditional ones of Ljung and Soderstrom (1985) along various dimensions:

- it considers how the existing algorithms are to be modified in the presence of heavy tails (Normal and Student-t are considered) ⇐ Curdia et al (2013)
- ❷ it introduces time-variation in volatility, emphasizing how this interacts with the coefficients' updating rule ⇐ Justiniano and Primiceri (2013)
- It shows how to impose restrictions so that the model is locally stationary and has a bounded mean ⇐ Projection facility, see Evans and Honkapohja (2001)

- Illowing for heavy-tails leads to a significant improvement in forecasting ⇒ it is crucial in order to obtain well-calibrated density forecasts
- the inclusion of bounds on the long-run trend imposes a discipline so that forecasts are (marginally) improved

This paper proposes a new adaptive algorithm that builds on recent developments of the score-driven models \leftarrow Creal et al. (2012) and Harvey (2013).

The adaptive algorithm for TVP models extends the traditional ones of Ljung and Soderstrom (1985) along various dimensions:

- it considers how the existing algorithms are to be modified in the presence of heavy tails (Normal and Student-t are considered) ⇐ Curdia et al (2013)
- It shows how to impose restrictions so that the model is locally stationary and has a bounded mean ⇐ Projection facility, see Evans and Honkapohja (2001)

- Illowing for heavy-tails leads to a significant improvement in forecasting ⇒ it is crucial in order to obtain well-calibrated density forecasts
- the inclusion of bounds on the long-run trend imposes a discipline so that forecasts are (marginally) improved

This paper proposes a new adaptive algorithm that builds on recent developments of the score-driven models \leftarrow Creal et al. (2012) and Harvey (2013).

The adaptive algorithm for TVP models extends the traditional ones of Ljung and Soderstrom (1985) along various dimensions:

- it considers how the existing algorithms are to be modified in the presence of heavy tails (Normal and Student-t are considered) ⇐ Curdia et al (2013)
- e it introduces time-variation in volatility, emphasizing how this interacts with the coefficients' updating rule ⇐ Justiniano and Primiceri (2013)
- It shows how to impose restrictions so that the model is locally stationary and has a bounded mean ⇐ Projection facility, see Evans and Honkapohja (2001)

- allowing for heavy-tails leads to a significant improvement in forecasting ⇒ it is crucial in order to obtain well-calibrated density forecasts
- Of the inclusion of bounds on the long-run trend imposes a discipline so that forecasts are (marginally) improved

The time-varying parameters model considered here is

$$y_t = \mathbf{x}'_t \phi_{t|t-1} + \epsilon_t, \quad \epsilon_t \sim IID(0, \sigma^2_{t|t-1}), \quad t = 1, ..., n.$$

where $\mathbf{x}_t = (1, y_{t-1}, ..., y_{t-\rho})'$, $\mathbf{f}_{t|t-1} = (\phi'_{t|t-1}, \sigma^2_{t|t-1})'$.

The driving process is represented by the score of the conditional distribution

$$\mathbf{f}_{t+1|t} = \omega + \mathbf{A}\mathbf{f}_{t|t-1} + \mathbf{B}\mathbf{s}_t, \quad \mathbf{s}_t = \mathcal{I}_t^{-1} \nabla_t,$$

$$\nabla_{t} = \frac{\partial \ell_{t} \left(y_{t} | Y_{t-1}, \theta, \mathbf{f}_{t|t-1} \right)}{\partial \mathbf{f}_{t|t-1}}, \quad \mathcal{I}_{t} = -\mathbf{E} \left[\frac{\partial^{2} \ell_{t} \left(y_{t} | Y_{t-1}, \theta, \mathbf{f}_{t|t-1} \right)}{\partial \mathbf{f}_{t|t-1} \partial \mathbf{f}_{t|t-1}'} \right].$$

In the observation-driven framework, the vector \mathbf{f}_{t+1} , although stochastic is perfectly predictable at time t, thus we denote $\mathbf{f}_{t+1|t}$ as the filter estimate

O The driving mechanism depends upon past observations only ⇒ i.e. a single source of error model

Why the score? A stochastic version of the Gauss-Newton searching direction for the parameters' variation ⇒ the score inherits the properties of the distribution of the innovations ε_t

O The time-varying parameters model considered here is

$$y_t = \mathbf{x}'_t \phi_{t|t-1} + \epsilon_t, \quad \epsilon_t \sim IID(0, \sigma^2_{t|t-1}), \quad t = 1, ..., n.$$

where $\mathbf{x}_t = (1, y_{t-1}, ..., y_{t-p})'$, $\mathbf{f}_{t|t-1} = (\phi'_{t|t-1}, \sigma^2_{t|t-1})'$.

The driving process is represented by the score of the conditional distribution

$$\mathbf{f}_{t+1|t} = \omega + \mathbf{A}\mathbf{f}_{t|t-1} + \mathbf{B}\mathbf{s}_t, \quad \mathbf{s}_t = \mathcal{I}_t^{-1} \nabla_t,$$

$$\nabla_{t} = \frac{\partial \ell_{t} \left(y_{t} | Y_{t-1}, \theta, \mathbf{f}_{t|t-1} \right)}{\partial \mathbf{f}_{t|t-1}}, \quad \mathcal{I}_{t} = -\mathbf{E} \left[\frac{\partial^{2} \ell_{t} \left(y_{t} | Y_{t-1}, \theta, \mathbf{f}_{t|t-1} \right)}{\partial \mathbf{f}_{t|t-1} \partial \mathbf{f}_{t|t-1}'} \right].$$

In the observation-driven framework, the vector \mathbf{f}_{t+1} , although stochastic is perfectly predictable at time t, thus we denote $\mathbf{f}_{t+1|t}$ as the filter estimate

O The driving mechanism depends upon past observations only ⇒ i.e. a single source of error model

Why the score? A stochastic version of the Gauss-Newton searching direction for the parameters' variation ⇒ the score inherits the properties of the distribution of the innovations ε_t

O The time-varying parameters model considered here is

$$y_t = \mathbf{x}'_t \phi_{t|t-1} + \epsilon_t, \quad \epsilon_t \sim IID(0, \sigma^2_{t|t-1}), \quad t = 1, ..., n.$$

where $\mathbf{x}_t = (1, y_{t-1}, ..., y_{t-p})'$, $\mathbf{f}_{t|t-1} = (\phi'_{t|t-1}, \sigma^2_{t|t-1})'$.

On The driving process is represented by the score of the conditional distribution

$$\mathbf{f}_{t+1|t} = \omega + \mathbf{A}\mathbf{f}_{t|t-1} + \mathbf{B}\mathbf{s}_t, \quad \mathbf{s}_t = \mathcal{I}_t^{-1} \nabla_t,$$

$$\nabla_{t} = \frac{\partial \ell_{t} \left(y_{t} | Y_{t-1}, \theta, \mathbf{f}_{t|t-1} \right)}{\partial \mathbf{f}_{t|t-1}}, \quad \mathcal{I}_{t} = -\mathbf{E} \left[\frac{\partial^{2} \ell_{t} \left(y_{t} | Y_{t-1}, \theta, \mathbf{f}_{t|t-1} \right)}{\partial \mathbf{f}_{t|t-1} \partial \mathbf{f}'_{t|t-1}} \right].$$

In the observation-driven framework, the vector \mathbf{f}_{t+1} , although stochastic is perfectly predictable at time t, thus we denote $\mathbf{f}_{t+1|t}$ as the filter estimate

O The driving mechanism depends upon past observations only ⇒ i.e. a single source of error model

Why the score? A stochastic version of the Gauss-Newton searching direction for the parameters' variation ⇒ the score inherits the properties of the distribution of the innovations ε_t

O The time-varying parameters model considered here is

$$y_t = \mathbf{x}'_t \phi_{t|t-1} + \epsilon_t, \quad \epsilon_t \sim IID(0, \sigma^2_{t|t-1}), \quad t = 1, ..., n.$$

where $\mathbf{x}_t = (1, y_{t-1}, ..., y_{t-p})'$, $\mathbf{f}_{t|t-1} = (\phi'_{t|t-1}, \sigma^2_{t|t-1})'$.

O The driving process is represented by the score of the conditional distribution

$$\mathbf{f}_{t+1|t} = \omega + \mathbf{A}\mathbf{f}_{t|t-1} + \mathbf{B}\mathbf{s}_t, \quad \mathbf{s}_t = \mathcal{I}_t^{-1} \nabla_t,$$

$$\nabla_t = \frac{\partial \ell_t \left(y_t | Y_{t-1}, \theta, \mathbf{f}_{t|t-1} \right)}{\partial \mathbf{f}_{t|t-1}}, \quad \mathcal{I}_t = -\mathbf{E} \left[\frac{\partial^2 \ell_t \left(y_t | Y_{t-1}, \theta, \mathbf{f}_{t|t-1} \right)}{\partial \mathbf{f}_{t|t-1} \partial \mathbf{f}'_{t|t-1}} \right].$$

- In the observation-driven framework, the vector \mathbf{f}_{t+1} , although stochastic is perfectly predictable at time t, thus we denote $\mathbf{f}_{t+1|t}$ as the filter estimate
- O The driving mechanism depends upon past observations only ⇒ i.e. a single source of error model
- Why the score? A stochastic version of the Gauss-Newton searching direction for the parameters' variation ⇒ the score inherits the properties of the distribution of the innovations e_t

The conditional log-likelihood of y_t is

$$\ell_t = -\frac{1}{2} \log \left(2\pi \right) - \frac{1}{2} \log \sigma_{t|t-1}^2 - \frac{1}{2} \frac{\epsilon_t^2}{\sigma_{t|t-1}^2}.$$

- We parameterize the model so that $\mathbf{A} = \mathbf{I}$ such that the the parameters follow a random walk-type law of motionand and we restrict \mathbf{B} to depends upon two scalar parameters κ_{ϕ} and κ_{σ}
- We end up with the following recursions:

$$\begin{aligned} \phi_{t+1|t} &= \phi_{t|t-1} + \kappa_{\phi} \mathbf{R}_{t}^{-1} \mathbf{x}_{t} \sigma_{t|t-1}^{-2} (y_{t} - \mathbf{x}_{t}' \phi_{t|t-1}) \\ \mathbf{R}_{t} &= \mathbf{R}_{t-1} + \kappa_{h} (\mathbf{x}_{t} \sigma_{t|t-1}^{-2} \mathbf{x}_{t}' - \mathbf{R}_{t-1}) \\ \sigma_{t+1|t}^{2} &= \sigma_{t|t-1}^{2} + \kappa_{\sigma} (\varepsilon_{t}^{2} - \sigma_{t|t-1}^{2}) \end{aligned}$$

the scaling matrix has been replaced by its smoothed version \mathbf{R}_t

The conditional log-likelihood of y_t is

$$\ell_t = -\frac{1}{2} \log \left(2\pi \right) - \frac{1}{2} \log \sigma_{t|t-1}^2 - \frac{1}{2} \frac{\epsilon_t^2}{\sigma_{t|t-1}^2}.$$

- We parameterize the model so that A = I such that the the parameters follow a random walk-type law of motionand and we restrict B to depends upon two scalar parameters κ_φ and κ_σ
- We end up with the following recursions:

$$\begin{aligned} \phi_{t+1|t} &= \phi_{t|t-1} + \kappa_{\phi} \mathbf{R}_{t}^{-1} \mathbf{x}_{t} \sigma_{t|t-1}^{-2} (y_{t} - \mathbf{x}_{t}' \phi_{t|t-1}) \\ \mathbf{R}_{t} &= \mathbf{R}_{t-1} + \kappa_{h} (\mathbf{x}_{t} \sigma_{t|t-1}^{-2} \mathbf{x}_{t}' - \mathbf{R}_{t-1}) \\ \sigma_{t+1|t}^{2} &= \sigma_{t|t-1}^{2} + \kappa_{\sigma} (\varepsilon_{t}^{2} - \sigma_{t|t-1}^{2}) \end{aligned}$$

the scaling matrix has been replaced by its smoothed version \mathbf{R}_t

The conditional log-likelihood of y_t is

$$\ell_t = -\frac{1}{2} \log \left(2\pi \right) - \frac{1}{2} \log \sigma_{t|t-1}^2 - \frac{1}{2} \frac{\epsilon_t^2}{\sigma_{t|t-1}^2}.$$

- We parameterize the model so that A = I such that the parameters follow a random walk-type law of motionand and we restrict B to depends upon two scalar parameters κ_φ and κ_σ
- We end up with the following recursions:

$$\mathbf{R}_{t+1|t} = \phi_{t|t-1} + \kappa_{\phi} \mathbf{R}_{t}^{-1} \mathbf{x}_{t} \sigma_{t|t-1}^{-2} (y_{t} - \mathbf{x}_{t}' \phi_{t|t-1})$$
$$\mathbf{R}_{t} = \mathbf{R}_{t-1} + \kappa_{h} (\mathbf{x}_{t} \sigma_{t|t-1}^{-2} \mathbf{x}_{t}' - \mathbf{R}_{t-1})$$
$$\sigma_{t+1|t}^{2} = \sigma_{t|t-1}^{2} + \kappa_{\sigma} (\varepsilon_{t}^{2} - \sigma_{t|t-1}^{2})$$

the scaling matrix has been replaced by its smoothed version \mathbf{R}_t

The conditional log-likelihood of y_t is

$$\ell_t = -\frac{1}{2} \log \left(2\pi \right) - \frac{1}{2} \log \sigma_{t|t-1}^2 - \frac{1}{2} \frac{\epsilon_t^2}{\sigma_{t|t-1}^2}.$$

- We parameterize the model so that A = I such that the parameters follow a random walk-type law of motionand and we restrict B to depends upon two scalar parameters κ_φ and κ_σ
- We end up with the following recursions:

$$\phi_{t+1|t} = \phi_{t|t-1} + \kappa_{\phi} \mathbf{R}_{t}^{-1} \mathbf{x}_{t} \sigma_{t|t-1}^{-2} (y_{t} - \mathbf{x}_{t}' \phi_{t|t-1})$$
$$\mathbf{R}_{t} = \mathbf{R}_{t-1} + \kappa_{h} (\mathbf{x}_{t} \sigma_{t|t-1}^{-2} \mathbf{x}_{t}' - \mathbf{R}_{t-1})$$
$$\sigma_{t+1|t}^{2} = \sigma_{t|t-1}^{2} + \kappa_{\sigma} (\varepsilon_{t}^{2} - \sigma_{t|t-1}^{2})$$

the scaling matrix has been replaced by its smoothed version \mathbf{R}_t

The conditional log-likelihood of y_t is

$$\ell_t = -\frac{1}{2} \log \left(2\pi \right) - \frac{1}{2} \log \sigma_{t|t-1}^2 - \frac{1}{2} \frac{\epsilon_t^2}{\sigma_{t|t-1}^2}.$$

- We parameterize the model so that A = I such that the parameters follow a random walk-type law of motionand and we restrict B to depends upon two scalar parameters κ_φ and κ_σ
- We end up with the following recursions:

$$\phi_{t+1|t} = \phi_{t|t-1} + \kappa_{\phi} \mathbf{R}_{t}^{-1} \mathbf{x}_{t} \sigma_{t|t-1}^{-2} (y_{t} - \mathbf{x}_{t}' \phi_{t|t-1})$$
$$\mathbf{R}_{t} = \mathbf{R}_{t-1} + \kappa_{h} (\mathbf{x}_{t} \sigma_{t|t-1}^{-2} \mathbf{x}_{t}' - \mathbf{R}_{t-1})$$
$$\sigma_{t+1|t}^{2} = \sigma_{t|t-1}^{2} + \kappa_{\sigma} (\varepsilon_{t}^{2} - \sigma_{t|t-1}^{2})$$

the scaling matrix has been replaced by its smoothed version \mathbf{R}_t

If we assume $\sigma_{t|t-1}^2 = \sigma^2$ and $\kappa_{\phi} = \kappa_h$, the recursions of our model collapse to the Constant Gain Learning (CGL) algorithm of Sargent and William (2005).

- Lemma 1: the CGL can be obtained from a Kalman filter (KF) by imposing particular restrictions on the state space model ⇒ those restrictions imply that the parameter-driven model collapses to an obervation-driven model.
- Lemma 2: the CGL implies a that past observations are weighted with exponentially decay factor (1 − κ)^j, the engineering literature refers to the constant forgetting factor ⇐ Koop and Korrobilis (2012).
- Lemma 3: other restrictions (on the state space model) has been proposed in the literature \Rightarrow all of them imply that the parameter-driven model collapses to an observation-driven model and the KF converges to a particular score-driven filter \Leftarrow Stock and Watson (1996), Sargent and William (2005), Li (2008) and Evans et al (2010).

Delle Monache and Petrella (2013)

If we assume $\sigma_{t|t-1}^2 = \sigma^2$ and $\kappa_{\phi} = \kappa_h$, the recursions of our model collapse to the Constant Gain Learning (CGL) algorithm of Sargent and William (2005).

- Lemma 1: the CGL can be obtained from a Kalman filter (KF) by imposing particular restrictions on the state space model ⇒ those restrictions imply that the parameter-driven model collapses to an obervation-driven model.
- Lemma 2: the CGL implies a that past observations are weighted with exponentially decay factor $(1 \kappa)^j$, the engineering literature refers to the constant forgetting factor \Leftarrow Koop and Korrobilis (2012).
- Lemma 3: other restrictions (on the state space model) has been proposed in the literature \Rightarrow all of them imply that the parameter-driven model collapses to an observation-driven model and the KF converges to a particular score-driven filter \Leftarrow Stock and Watson (1996), Sargent and William (2005), Li (2008) and Evans et al (2010).

Delle Monache and Petrella (2013)

If we assume $\sigma_{t|t-1}^2 = \sigma^2$ and $\kappa_{\phi} = \kappa_h$, the recursions of our model collapse to the Constant Gain Learning (CGL) algorithm of Sargent and William (2005).

- Lemma 1: the CGL can be obtained from a Kalman filter (KF) by imposing particular restrictions on the state space model ⇒ those restrictions imply that the parameter-driven model collapses to an obervation-driven model.
- Lemma 2: the CGL implies a that past observations are weighted with exponentially decay factor $(1 \kappa)^j$, the engineering literature refers to the constant forgetting factor \Leftarrow Koop and Korrobilis (2012).
- Lemma 3: other restrictions (on the state space model) has been proposed in the literature ⇒ all of them imply that the parameter-driven model collapses to an observation-driven model and the KF converges to a particular score-driven filter ⇐ Stock and Watson (1996), Sargent and William (2005), Li (2008) and Evans et al (2010).

Delle Monache and Petrella (2013)

If we assume $\sigma_{t|t-1}^2 = \sigma^2$ and $\kappa_{\phi} = \kappa_h$, the recursions of our model collapse to the Constant Gain Learning (CGL) algorithm of Sargent and William (2005).

- Q Lemma 1: the CGL can be obtained from a Kalman filter (KF) by imposing particular restrictions on the state space model ⇒ those restrictions imply that the parameter-driven model collapses to an obervation-driven model.
- Q Lemma 2: the CGL implies a that past observations are weighted with exponentially decay factor (1 − κ)^j, the engineering literature refers to the constant forgetting factor ⇐ Koop and Korrobilis (2012).
- I Lemma 3: other restrictions (on the state space model) has been proposed in the literature ⇒ all of them imply that the parameter-driven model collapses to an observation-driven model and the KF converges to a particular score-driven filter ⇐ Stock and Watson (1996), Sargent and William (2005), Li (2008) and Evans et al (2010).

Delle Monache and Petrella (2013)

If we assume $\sigma_{t|t-1}^2 = \sigma^2$ and $\kappa_{\phi} = \kappa_h$, the recursions of our model collapse to the Constant Gain Learning (CGL) algorithm of Sargent and William (2005).

- Q Lemma 1: the CGL can be obtained from a Kalman filter (KF) by imposing particular restrictions on the state space model ⇒ those restrictions imply that the parameter-driven model collapses to an obervation-driven model.
- Q Lemma 2: the CGL implies a that past observations are weighted with exponentially decay factor (1 − κ)^j, the engineering literature refers to the constant forgetting factor ⇐ Koop and Korrobilis (2012).
- I Lemma 3: other restrictions (on the state space model) has been proposed in the literature ⇒ all of them imply that the parameter-driven model collapses to an observation-driven model and the KF converges to a particular score-driven filter ⇐ Stock and Watson (1996), Sargent and William (2005), Li (2008) and Evans et al (2010).

Delle Monache and Petrella (2013)

If we assume $\sigma_{t|t-1}^2 = \sigma^2$ and $\kappa_{\phi} = \kappa_h$, the recursions of our model collapse to the Constant Gain Learning (CGL) algorithm of Sargent and William (2005).

- Q Lemma 1: the CGL can be obtained from a Kalman filter (KF) by imposing particular restrictions on the state space model ⇒ those restrictions imply that the parameter-driven model collapses to an obervation-driven model.
- Q Lemma 2: the CGL implies a that past observations are weighted with exponentially decay factor (1 − κ)^j, the engineering literature refers to the constant forgetting factor ⇐ Koop and Korrobilis (2012).
- I Lemma 3: other restrictions (on the state space model) has been proposed in the literature ⇒ all of them imply that the parameter-driven model collapses to an observation-driven model and the KF converges to a particular score-driven filter ⇐ Stock and Watson (1996), Sargent and William (2005), Li (2008) and Evans et al (2010).
- Q Remark 4: the CGL can be seen as a recursive solution for quadratic loss function criterion and it leads to a stochastic analog of the recursive Gauss-Newton search direction ⇐ Ljung and Soderstrom (1985)

Delle Monache and Petrella (2013)

The conditional log-likelihood is

$$\ell_t = c(\eta) - \frac{1}{2} \ln \sigma_{t|t-1}^2 - \left(\frac{\eta+1}{2\eta}\right) \ln \left[1 + \frac{\eta}{1-2\eta} \frac{\epsilon_t^2}{\sigma_{t|t-1}^2}\right],$$

where $c(\eta)$ is a constant and $v = 1/\eta$ are the degree of freedoms.

The distribution has a clear impact on the TVP's dynamics, in fact the two scaled-scores are

$$\mathbf{s}_{\phi t} = \frac{(1-2\eta)(1+3\eta)}{(1+\eta)} (\mathbf{x}_t \sigma_{t|t-1}^{-2} \mathbf{x}_t')^{-1} \mathbf{x}_t \sigma_{t|t-1}^{-2} w_t \epsilon_t,$$
$$s_{\sigma t} = (1+3\eta) (w_t \epsilon_t^2 - \sigma_{t|t-1}^2).$$

• The weights $w_t = \frac{(1+\eta)}{(1-2\eta+\eta\zeta_t)}$, where $\zeta_t = \epsilon_t^2/\sigma_{t|t-1}^2 \Rightarrow$ the variance affects the conditional mean

 \bigcirc This leads to a double weighting schema \Rightarrow across obs and across time.

The conditional log-likelihood is

$$\ell_t = c(\eta) - \frac{1}{2} \ln \sigma_{t|t-1}^2 - \left(\frac{\eta+1}{2\eta}\right) \ln \left[1 + \frac{\eta}{1-2\eta} \frac{\epsilon_t^2}{\sigma_{t|t-1}^2}\right],$$

where $c(\eta)$ is a constant and $v = 1/\eta$ are the degree of freedoms.

The distribution has a clear impact on the TVP's dynamics, in fact the two scaled-scores are

$$\mathbf{s}_{\phi t} = \frac{(1-2\eta)(1+3\eta)}{(1+\eta)} (\mathbf{x}_t \sigma_{t|t-1}^{-2} \mathbf{x}_t')^{-1} \mathbf{x}_t \sigma_{t|t-1}^{-2} \mathbf{w}_t \epsilon_t,$$
$$s_{\sigma t} = (1+3\eta) (w_t c_s^2 - \sigma_{t|t-1}^2).$$

• The weights $w_t = \frac{(1+\eta)}{(1-2\eta+\eta\zeta_t)}$, where $\zeta_t = \epsilon_t^2/\sigma_{t|t-1}^2 \Rightarrow$ the variance affects the conditional mean

) This leads to a double weighting schema \Rightarrow across obs and across time.

The conditional log-likelihood is

$$\ell_t = c(\eta) - \frac{1}{2} \ln \sigma_{t|t-1}^2 - \left(\frac{\eta+1}{2\eta}\right) \ln \left[1 + \frac{\eta}{1-2\eta} \frac{\epsilon_t^2}{\sigma_{t|t-1}^2}\right],$$

where $c(\eta)$ is a constant and $v = 1/\eta$ are the degree of freedoms.

The distribution has a clear impact on the TVP's dynamics, in fact the two scaled-scores are

$$\mathbf{s}_{\phi t} = \frac{(1-2\eta)(1+3\eta)}{(1+\eta)} (\mathbf{x}_t \sigma_{t|t-1}^{-2} \mathbf{x}_t')^{-1} \mathbf{x}_t \sigma_{t|t-1}^{-2} w_t \epsilon_t,$$
$$s_{\sigma t} = (1+3\eta) (w_t \epsilon_t^2 - \sigma_{t|t-1}^2).$$

• The weights $w_t = \frac{(1+\eta)}{(1-2\eta+\eta\zeta_t)}$, where $\zeta_t = \epsilon_t^2/\sigma_{t|t-1}^2 \Rightarrow$ the variance affects the conditional mean

 \bigcirc This leads to a double weighting schema \Rightarrow across obs and across time.

The conditional log-likelihood is

$$\ell_t = c(\eta) - \frac{1}{2} \ln \sigma_{t|t-1}^2 - \left(\frac{\eta+1}{2\eta}\right) \ln \left[1 + \frac{\eta}{1-2\eta} \frac{\epsilon_t^2}{\sigma_{t|t-1}^2}\right],$$

where $c(\eta)$ is a constant and $v = 1/\eta$ are the degree of freedoms.

The distribution has a clear impact on the TVP's dynamics, in fact the two scaled-scores are

$$\mathbf{s}_{\phi t} = \frac{(1-2\eta)(1+3\eta)}{(1+\eta)} (\mathbf{x}_t \sigma_{t|t-1}^{-2} \mathbf{x}_t')^{-1} \mathbf{x}_t \sigma_{t|t-1}^{-2} w_t \epsilon_t,$$
$$s_{\sigma t} = (1+3\eta) (w_t \epsilon_t^2 - \sigma_{t|t-1}^2).$$

3 The weights $w_t = \frac{(1+\eta)}{(1-2\eta+\eta\zeta_t)}$, where $\zeta_t = \epsilon_t^2/\sigma_{t|t-1}^2 \Rightarrow$ the variance affects the conditional mean

) This leads to a double weighting schema \Rightarrow across obs and across time.

The conditional log-likelihood is

$$\ell_t = c(\eta) - \frac{1}{2} \ln \sigma_{t|t-1}^2 - \left(\frac{\eta+1}{2\eta}\right) \ln \left[1 + \frac{\eta}{1-2\eta} \frac{\epsilon_t^2}{\sigma_{t|t-1}^2}\right],$$

where $c(\eta)$ is a constant and $v = 1/\eta$ are the degree of freedoms.

The distribution has a clear impact on the TVP's dynamics, in fact the two scaled-scores are

$$\mathbf{s}_{\phi t} = \frac{(1-2\eta)(1+3\eta)}{(1+\eta)} (\mathbf{x}_t \sigma_{t|t-1}^{-2} \mathbf{x}_t')^{-1} \mathbf{x}_t \sigma_{t|t-1}^{-2} w_t \epsilon_t,$$
$$s_{\sigma t} = (1+3\eta) (w_t \epsilon_t^2 - \sigma_{t|t-1}^2).$$

3 The weights $w_t = \frac{(1+\eta)}{(1-2\eta+\eta\zeta_t)}$, where $\zeta_t = \epsilon_t^2/\sigma_{t|t-1}^2 \Rightarrow$ the variance affects the conditional mean

O This leads to a double weighting schema \Rightarrow across obs and across time.

Weighting across realizations

Double weighting schema

As example we consider the time-varying mean and variance only

$$y_t = \mu_{t|t-1} + \epsilon_t, \quad \epsilon_t \sim t_v(0, \sigma_{t|t-1}^2),$$
$$\mu_{t+1|t} = \mu_{t|t-1} + \kappa_\mu s_{\mu t}, \quad \sigma_{t+1|t}^2 = \sigma_{t|t-1}^2 + \kappa_\sigma s_{\sigma t}.$$

The implied filter for the mean is

$$\mu_{t+1|t} = \frac{\theta}{1 - (1 - \theta w_t)L} \widetilde{y}_t = \theta \sum_{j=0}^{\infty} \gamma_j \widetilde{y}_{t-j},$$

with $heta = rac{\kappa_{\mu}(1-2\eta)(1+3\eta)}{(1+\eta)}$ and $\widetilde{y}_t = w_t y_t$, providing that $|1 - \theta w_t| < 1$.

We have a double weighting schema: across realizations regulated by w_t and across time depending on γ_i, where

$$\gamma_0 = 1, \quad \gamma_j = \prod_{k=0}^{j-1} (1 - \theta w_{t-k}).$$

• The estimated variance is $\sigma_{t+1|t}^2 = \xi \sum_{j=0}^{\infty} (1-\xi)^j \tilde{\epsilon}_{t-j}^2$, with $\xi = \kappa_\sigma (1+3\eta)$ and $\tilde{\epsilon}_t^2 = w_t \epsilon_t^2$.

• We have one-sided low-pass filters on $\tilde{y}_t = w_t y_t$ and $\tilde{\epsilon}_t^2 = w_t \epsilon_t^2$, respectively. The transfer function for the mean has TVP implying a TV spectral density; see Dahlhaus (2012).

Double weighting schema

As example we consider the time-varying mean and variance only

$$\begin{aligned} \mathbf{y}_t &= \mu_{t|t-1} + \epsilon_t, \quad \epsilon_t \sim t_v(\mathbf{0}, \sigma_{t|t-1}^2), \\ \mu_{t+1|t} &= \mu_{t|t-1} + \kappa_\mu \mathbf{s}_{\mu t}, \quad \sigma_{t+1|t}^2 &= \sigma_{t|t-1}^2 + \kappa_\sigma \mathbf{s}_{\sigma t}. \end{aligned}$$

O The implied filter for the mean is

$$\mu_{t+1|t} = \frac{\theta}{1 - (1 - \theta w_t)L} \widetilde{y}_t = \theta \sum_{j=0}^{\infty} \gamma_j \widetilde{y}_{t-j},$$

with $\theta = \frac{\kappa_{\mu}(1-2\eta)(1+3\eta)}{(1+\eta)}$ and $\widetilde{y}_t = w_t y_t$, providing that $|1 - \theta w_t| < 1$.

We have a double weighting schema: across realizations regulated by w_t and across time depending on γ_i, where

$$\gamma_0 = 1, \quad \gamma_j = \prod_{k=0}^{J-1} (1 - \theta w_{t-k}).$$

• The estimated variance is $\sigma_{t+1|t}^2 = \xi \sum_{j=0}^{\infty} (1-\xi)^j \tilde{\epsilon}_{t-j}^2$, with $\xi = \kappa_\sigma (1+3\eta)$ and $\tilde{\epsilon}_t^2 = w_t \epsilon_t^2$.

• We have one-sided low-pass filters on $\tilde{y}_t = w_t y_t$ and $\tilde{\epsilon}_t^2 = w_t \epsilon_t^2$, respectively. The transfer function for the mean has TVP implying a TV spectral density; see Dahlhaus (2012).
As example we consider the time-varying mean and variance only

$$y_t = \mu_{t|t-1} + \epsilon_t, \quad \epsilon_t \sim t_v(0, \sigma_{t|t-1}^2),$$
$$\mu_{t+1|t} = \mu_{t|t-1} + \kappa_\mu s_{\mu t}, \quad \sigma_{t+1|t}^2 = \sigma_{t|t-1}^2 + \kappa_\sigma s_{\sigma t}.$$

O The implied filter for the mean is

$$\mu_{t+1|t} = \frac{\theta}{1 - (1 - \theta w_t)L} \widetilde{y}_t = \theta \sum_{j=0}^{\infty} \gamma_j \widetilde{y}_{t-j},$$

with $\theta = \frac{\kappa_{\mu}(1-2\eta)(1+3\eta)}{(1+\eta)}$ and $\widetilde{y}_t = w_t y_t$, providing that $|1 - \theta w_t| < 1$.

We have a double weighting schema: across realizations regulated by w_t and across time depending on γ_j, where

$$\gamma_0 = 1, \quad \gamma_j = \prod_{k=0}^{j-1} (1 - \theta w_{t-k}).$$

• The estimated variance is $\sigma_{t+1|t}^2 = \xi \sum_{j=0}^{\infty} (1-\xi)^j \tilde{\epsilon}_{t-j}^2$, with $\xi = \kappa_\sigma (1+3\eta)$ and $\tilde{\epsilon}_t^2 = w_t \epsilon_t^2$.

• We have one-sided low-pass filters on $\tilde{y}_t = w_t y_t$ and $\tilde{\epsilon}_t^2 = w_t \epsilon_t^2$, respectively. The transfer function for the mean has TVP implying a TV spectral density; see Dahlhaus (2012).

As example we consider the time-varying mean and variance only

$$y_t = \mu_{t|t-1} + \epsilon_t, \quad \epsilon_t \sim t_v(0, \sigma_{t|t-1}^2),$$
$$\mu_{t+1|t} = \mu_{t|t-1} + \kappa_\mu s_{\mu t}, \quad \sigma_{t+1|t}^2 = \sigma_{t|t-1}^2 + \kappa_\sigma s_{\sigma t}.$$

• The implied filter for the mean is

$$\mu_{t+1|t} = \frac{\theta}{1 - (1 - \theta w_t)L} \widetilde{y}_t = \theta \sum_{j=0}^{\infty} \gamma_j \widetilde{y}_{t-j},$$

 ∞

with $\theta = \frac{\kappa_{\mu}(1-2\eta)(1+3\eta)}{(1+\eta)}$ and $\widetilde{y}_t = w_t y_t$, providing that $|1 - \theta w_t| < 1$.

We have a double weighting schema: across realizations regulated by w_t and across time depending on \(\gamma_j\), where

$$\gamma_0 = 1, \quad \gamma_j = \prod_{k=0}^{j-1} (1 - \theta w_{t-k}).$$

• The estimated variance is $\sigma_{t+1|t}^2 = \xi \sum_{j=0}^{\infty} (1-\xi)^j \tilde{\epsilon}_{t-j}^2$, with $\xi = \kappa_\sigma (1+3\eta)$ and $\tilde{\epsilon}_t^2 = w_t \epsilon_t^2$.

• We have one-sided low-pass filters on $\tilde{y}_t = w_t y_t$ and $\tilde{\epsilon}_t^2 = w_t \epsilon_t^2$, respectively. The transfer function for the mean has TVP implying a TV spectral density; see Dahlhaus (2012).

As example we consider the time-varying mean and variance only

$$y_t = \mu_{t|t-1} + \epsilon_t, \quad \epsilon_t \sim t_v(0, \sigma_{t|t-1}^2),$$
$$\mu_{t+1|t} = \mu_{t|t-1} + \kappa_\mu s_{\mu t}, \quad \sigma_{t+1|t}^2 = \sigma_{t|t-1}^2 + \kappa_\sigma s_{\sigma t}.$$

O The implied filter for the mean is

$$\mu_{t+1|t} = \frac{\theta}{1 - (1 - \theta w_t)L} \widetilde{y}_t = \theta \sum_{j=0}^{\infty} \gamma_j \widetilde{y}_{t-j},$$

with $\theta = \frac{\kappa_{\mu}(1-2\eta)(1+3\eta)}{(1+\eta)}$ and $\widetilde{y}_t = w_t y_t$, providing that $|1 - \theta w_t| < 1$.

We have a double weighting schema: across realizations regulated by w_t and across time depending on \(\gamma_j\), where

$$\gamma_0 = 1, \quad \gamma_j = \prod_{k=0}^{j-1} (1 - \theta w_{t-k}).$$

• The estimated variance is $\sigma_{t+1|t}^2 = \xi \sum_{j=0}^{\infty} (1-\xi)^j \tilde{\epsilon}_{t-j}^2$, with $\xi = \kappa_\sigma (1+3\eta)$ and $\tilde{\epsilon}_t^2 = w_t \epsilon_t^2$.

• We have one-sided low-pass filters on $\tilde{y}_t = w_t y_t$ and $\tilde{\epsilon}_t^2 = w_t \epsilon_t^2$, respectively. The transfer function for the mean has TVP implying a TV spectral density; see Dahlhaus (2012).

As example we consider the time-varying mean and variance only

$$y_t = \mu_{t|t-1} + \epsilon_t, \quad \epsilon_t \sim t_v(0, \sigma_{t|t-1}^2),$$
$$\mu_{t+1|t} = \mu_{t|t-1} + \kappa_\mu s_{\mu t}, \quad \sigma_{t+1|t}^2 = \sigma_{t|t-1}^2 + \kappa_\sigma s_{\sigma t}.$$

O The implied filter for the mean is

$$\mu_{t+1|t} = \frac{\theta}{1 - (1 - \theta w_t)L} \widetilde{y}_t = \theta \sum_{j=0}^{\infty} \gamma_j \widetilde{y}_{t-j},$$

with $\theta = \frac{\kappa_{\mu}(1-2\eta)(1+3\eta)}{(1+\eta)}$ and $\widetilde{y}_t = w_t y_t$, providing that $|1 - \theta w_t| < 1$.

We have a double weighting schema: across realizations regulated by w_t and across time depending on \(\gamma_j\), where

$$\gamma_0 = 1, \quad \gamma_j = \prod_{k=0}^{j-1} (1 - \theta w_{t-k}).$$

• The estimated variance is $\sigma_{t+1|t}^2 = \xi \sum_{j=0}^{\infty} (1-\xi)^j \tilde{\epsilon}_{t-j}^2$, with $\xi = \kappa_\sigma (1+3\eta)$ and $\tilde{\epsilon}_t^2 = w_t \epsilon_t^2$.

• We have one-sided low-pass filters on $\tilde{y}_t = w_t y_t$ and $\tilde{\epsilon}_t^2 = w_t \epsilon_t^2$, respectively. The transfer function for the mean has TVP implying a TV spectral density; see Dahlhaus (2012).

Often we may want to impose restrictions on the parameters space \Rightarrow this is achived by re-parameterizing the model:

• In a score-driven approach we need to define the transf. fne $\mathbf{f}_t = g(\tilde{\mathbf{f}}_t)$, where \mathbf{f}_t is the original vector of par. (we want to restrict), $\tilde{\mathbf{f}}_t$ is the transf. vector (unrestricted) and g(.) is a continous and twice diff. function (link function)

(a) As a consequence, the model is expressed wrt $\tilde{\mathbf{f}}_t$ and the scaled-score is

$$\widetilde{\mathbf{s}}_t = (\Psi_t' \mathcal{I}_t \Psi_t)^{-1} \Psi_t' \triangledown_t,$$

where $\Psi_t = \frac{\partial f_{t|t-1}}{\partial \tilde{f}'_{t|t-1}}$ is the Jacobian of $g(.) \Rightarrow$ re-weights the Gauss-Newton search so that restrictions are satisfied \Rightarrow optimal way to implement the projection facility

Often we may want to impose restrictions on the parameters space \Rightarrow this is achived by re-parameterizing the model:

• In a score-driven approach we need to define the transf. fne $\mathbf{f}_t = g(\mathbf{f}_t)$, where \mathbf{f}_t is the original vector of par. (we want to restrict), \mathbf{f}_t is the transf. vector (unrestricted) and g(.) is a continous and twice diff. function (link function)

(a) As a consequence, the model is expressed wrt $\tilde{\mathbf{f}}_t$ and the scaled-score is

$$\widetilde{\mathbf{s}}_t = (\Psi_t' \mathcal{I}_t \Psi_t)^{-1} \Psi_t' \nabla_t,$$

where $\Psi_t = \frac{\partial f_{t|t-1}}{\partial \tilde{f}'_{t|t-1}}$ is the Jacobian of $g(.) \Rightarrow$ re-weights the Gauss-Newton search so that restrictions are satisfied \Rightarrow optimal way to implement the projection facility

Often we may want to impose restrictions on the parameters space \Rightarrow this is achived by re-parameterizing the model:

• In a score-driven approach we need to define the transf. fne $\mathbf{f}_t = g(\tilde{\mathbf{f}}_t)$, where \mathbf{f}_t is the original vector of par. (we want to restrict), $\tilde{\mathbf{f}}_t$ is the transf. vector (unrestricted) and g(.) is a continuous and twice diff. function (link function)

 \bigcirc As a consequence, the model is expressed wrt $\widetilde{\mathbf{f}}_t$ and the scaled-score is

 $\widetilde{\mathbf{s}}_t = (\Psi_t' \mathcal{I}_t \Psi_t)^{-1} \Psi_t' \nabla_t,$

where $\Psi_t = \frac{\partial f_{t|t-1}}{\partial \tilde{f}'_{t|t-1}}$ is the Jacobian of $g(.) \Rightarrow$ re-weights the Gauss-Newton search so that restrictions are satisfied \Rightarrow optimal way to implement the projection facility

Often we may want to impose restrictions on the parameters space \Rightarrow this is achived by re-parameterizing the model:

- In a score-driven approach we need to define the transf. fne $\mathbf{f}_t = g(\tilde{\mathbf{f}}_t)$, where \mathbf{f}_t is the original vector of par. (we want to restrict), $\tilde{\mathbf{f}}_t$ is the transf. vector (unrestricted) and g(.) is a continuous and twice diff. function (link function)
- **(a)** As a consequence, the model is expressed wrt $\tilde{\mathbf{f}}_t$ and the scaled-score is

$$\widetilde{\mathbf{s}}_t = (\Psi_t' \mathcal{I}_t \Psi_t)^{-1} \Psi_t' \nabla_t,$$

where $\Psi_t = \frac{\partial \mathbf{f}_{t|t-1}}{\partial \mathbf{\tilde{f}}'_{t|t-1}}$ is the Jacobian of $g(.) \Rightarrow$ re-weights the Gauss-Newton search so that restrictions are satisfied \Rightarrow optimal way to implement the projection facility

Often we may want to impose restrictions on the parameters space \Rightarrow this is achived by re-parameterizing the model:

- In a score-driven approach we need to define the transf. fne $\mathbf{f}_t = g(\tilde{\mathbf{f}}_t)$, where \mathbf{f}_t is the original vector of par. (we want to restrict), $\tilde{\mathbf{f}}_t$ is the transf. vector (unrestricted) and g(.) is a continuous and twice diff. function (link function)
- **(a)** As a consequence, the model is expressed wrt $\tilde{\mathbf{f}}_t$ and the scaled-score is

$$\widetilde{\mathbf{s}}_t = (\Psi_t' \mathcal{I}_t \Psi_t)^{-1} \Psi_t' \nabla_t,$$

where $\Psi_t = \frac{\partial f_{t|t-1}}{\partial \tilde{f}'_{t|t-1}}$ is the Jacobian of $g(.) \Rightarrow$ re-weights the Gauss-Newton search so that restrictions are satisfied \Rightarrow optimal way to implement the projection facility

• We re-parametrize the model wrt to the partial autocorrelations (PACs).

- ◎ For each time *t*, the coefficients $\phi_t \in \mathbf{S}_t^{\rho}$, where \mathbf{S}_t^{ρ} is the hyperplane with stat roots, i.e. $\phi_t(\mathbf{z}_t) \neq 0$, where $\mathbf{z}_t = (z_{1t}, ..., z_{\rho t}) \in \mathbf{C}^{\rho}$ and $|z_{jt}| < 1$.
- We consider $\phi_t = (\phi_{1t}, ..., \phi_{pt})'$, the corresponding PACs $\pi_t = (\pi_{1t}, ..., \pi_{pt})'$ and the unrestricted parameters $\alpha_t = (\alpha_{1t}, ..., \alpha_{pt})'$.
- There is a unique function mapping the AR coeffs to the PACs that is $\phi_t = \Phi(\pi_t) \Rightarrow$ the DL algorithm; see Bandorff-Nielsen and Schou (1973)
- A stationary AR process has that π_{jt} ∈ (−1, 1), thus we define another function π_t = Υ(α_t), such that |π_{jt}| < 1; e.g. inverse Fisher transf</p>
- We finally have the mapping between the stationary coeffs and the unrestricted parameters, i.e. φ_t = g(α_t) = Φ[Υ(α_t)], where α_t∈ (-∞,∞), π_t ∈ (-1, 1) and φ_t ∈ S^p.

Imposing stationary coefficients

• We re-parametrize the model wrt to the partial autocorrelations (PACs).

- ◎ For each time *t*, the coefficients $\phi_t \in \mathbf{S}_t^p$, where \mathbf{S}_t^p is the hyperplane with stat roots, i.e. $\phi_t(\mathbf{z}_t) \neq 0$, where $\mathbf{z}_t = (z_{1t}, ..., z_{pt}) \in \mathbf{C}^p$ and $|z_{jt}| < 1$.
- We consider $\phi_t = (\phi_{1t}, ..., \phi_{pt})'$, the corresponding PACs $\pi_t = (\pi_{1t}, ..., \pi_{pt})'$ and the unrestricted parameters $\alpha_t = (\alpha_{1t}, ..., \alpha_{pt})'$.
- There is a unique function mapping the AR coeffs to the PACs that is $\phi_t = \Phi(\pi_t) \Rightarrow$ the DL algorithm; see Bandorff-Nielsen and Schou (1973)
- A stationary AR process has that π_{jt} ∈ (−1, 1), thus we define another function π_t = Υ(α_t), such that |π_{jt}| < 1; e.g. inverse Fisher transf</p>
- We finally have the mapping between the stationary coeffs and the unrestricted parameters, i.e. φ_t = g(α_t) = Φ[Υ(α_t)], where α_t∈ (-∞,∞), π_t ∈ (-1,1) and φ_t ∈ S^p.

Imposing stationary coefficients

- **9** We re-parametrize the model wrt to the partial autocorrelations (PACs).
- **②** For each time *t*, the coefficients $\phi_t \in \mathbf{S}_t^p$, where \mathbf{S}_t^p is the hyperplane with stat roots, i.e. $\phi_t(\mathbf{z}_t) \neq 0$, where $\mathbf{z}_t = (z_{1t}, ..., z_{pt}) \in \mathbf{C}^p$ and $|z_{jt}| < 1$.
- We consider $\phi_t = (\phi_{1t}, ..., \phi_{pt})'$, the corresponding PACs $\pi_t = (\pi_{1t}, ..., \pi_{pt})'$ and the unrestricted parameters $\alpha_t = (\alpha_{1t}, ..., \alpha_{pt})'$.
- There is a unique function mapping the AR coeffs to the PACs that is $\phi_t = \Phi(\pi_t) \Rightarrow$ the DL algorithm; see Bandorff-Nielsen and Schou (1973)
- O A stationary AR process has that π_{jt} ∈ (-1, 1), thus we define another function π_t = Υ(α_t), such that |π_{jt}| < 1; e.g. inverse Fisher transf</p>
- We finally have the mapping between the stationary coeffs and the unrestricted parameters, i.e. φ_t = g(α_t) = Φ[Υ(α_t)], where α_t∈ (-∞,∞), π_t ∈ (-1, 1) and φ_t ∈ S^p.

Imposing stationary coefficients

- **9** We re-parametrize the model wrt to the partial autocorrelations (PACs).
- **②** For each time *t*, the coefficients $\phi_t \in \mathbf{S}_t^p$, where \mathbf{S}_t^p is the hyperplane with stat roots, i.e. $\phi_t(\mathbf{z}_t) \neq 0$, where $\mathbf{z}_t = (z_{1t}, ..., z_{pt}) \in \mathbf{C}^p$ and $|z_{jt}| < 1$.
- We consider φ_t = (φ_{1t}, ..., φ_{pt})', the corresponding PACs π_t = (π_{1t}, ..., π_{pt})' and the unrestricted parameters α_t = (α_{1t}, ..., α_{pt})'.
- There is a unique function mapping the AR coeffs to the PACs that is $\phi_t = \Phi(\pi_t) \Rightarrow$ the DL algorithm; see Bandorff-Nielsen and Schou (1973)
- O A stationary AR process has that π_{jt} ∈ (-1, 1), thus we define another function π_t = Υ(α_t), such that |π_{jt}| < 1; e.g. inverse Fisher transf</p>
- We finally have the mapping between the stationary coeffs and the unrestricted parameters, i.e. φ_t = g(α_t) = Φ[Υ(α_t)], where α_t∈ (-∞,∞), π_t ∈ (-1, 1) and φ_t ∈ S^p.

- **O** We re-parametrize the model wrt to the partial autocorrelations (PACs).
- **②** For each time *t*, the coefficients $\phi_t \in \mathbf{S}_t^p$, where \mathbf{S}_t^p is the hyperplane with stat roots, i.e. $\phi_t(\mathbf{z}_t) \neq 0$, where $\mathbf{z}_t = (z_{1t}, ..., z_{pt}) \in \mathbf{C}^p$ and $|z_{jt}| < 1$.
- We consider φ_t = (φ_{1t}, ..., φ_{pt})', the corresponding PACs π_t = (π_{1t}, ..., π_{pt})' and the unrestricted parameters α_t = (α_{1t}, ..., α_{pt})'.
- There is a unique function mapping the AR coeffs to the PACs that is $\phi_t = \Phi(\pi_t) \Rightarrow$ the DL algorithm; see Bandorff-Nielsen and Schou (1973)
- A stationary AR process has that π_{jt} ∈ (−1, 1), thus we define another function π_t = Υ(α_t), such that |π_{jt}| < 1; e.g. inverse Fisher transf</p>
- We finally have the mapping between the stationary coeffs and the unrestricted parameters, i.e. φ_t = g(α_t) = Φ[Υ(α_t)], where α_t∈ (-∞,∞), π_t ∈ (-1,1) and φ_t ∈ S^p.

- **O** We re-parametrize the model wrt to the partial autocorrelations (PACs).
- **②** For each time *t*, the coefficients $\phi_t \in \mathbf{S}_t^p$, where \mathbf{S}_t^p is the hyperplane with stat roots, i.e. $\phi_t(\mathbf{z}_t) \neq 0$, where $\mathbf{z}_t = (z_{1t}, ..., z_{pt}) \in \mathbf{C}^p$ and $|z_{jt}| < 1$.
- We consider φ_t = (φ_{1t}, ..., φ_{pt})', the corresponding PACs π_t = (π_{1t}, ..., π_{pt})' and the unrestricted parameters α_t = (α_{1t}, ..., α_{pt})'.
- There is a unique function mapping the AR coeffs to the PACs that is $\phi_t = \Phi(\pi_t) \Rightarrow$ the DL algorithm; see Bandorff-Nielsen and Schou (1973)
- A stationary AR process has that π_{jt} ∈ (-1, 1), thus we define another function π_t = Υ(α_t), such that |π_{jt}| < 1; e.g. inverse Fisher transf</p>

We finally have the mapping between the stationary coeffs and the unrestricted parameters, i.e. φ_t = g(α_t) = Φ[Υ(α_t)], where α_t∈ (-∞,∞), π_t ∈ (-1, 1) and φ_t ∈ S^p.

- We re-parametrize the model wrt to the partial autocorrelations (PACs).
- **②** For each time *t*, the coefficients $\phi_t \in \mathbf{S}_t^p$, where \mathbf{S}_t^p is the hyperplane with stat roots, i.e. $\phi_t(\mathbf{z}_t) \neq 0$, where $\mathbf{z}_t = (z_{1t}, ..., z_{pt}) \in \mathbf{C}^p$ and $|z_{jt}| < 1$.
- We consider φ_t = (φ_{1t}, ..., φ_{pt})', the corresponding PACs π_t = (π_{1t}, ..., π_{pt})' and the unrestricted parameters α_t = (α_{1t}, ..., α_{pt})'.
- There is a unique function mapping the AR coeffs to the PACs that is $\phi_t = \Phi(\pi_t) \Rightarrow$ the DL algorithm; see Bandorff-Nielsen and Schou (1973)
- A stationary AR process has that π_{jt} ∈ (-1, 1), thus we define another function π_t = Υ(α_t), such that |π_{jt}| < 1; e.g. inverse Fisher transf
- We finally have the mapping between the stationary coeffs and the unrestricted parameters, i.e. φ_t = g(α_t) = Φ[Υ(α_t)], where α_t∈ (-∞,∞), π_t ∈ (-1,1) and φ_t ∈ S^p.

The Jacobian of inverse Fisher transf. is straightforward, while a novel expression for $\Gamma_t = \partial \phi_t / \partial \pi'_t$ is derived \Rightarrow the last iteration of the recursion

$$\Gamma_{k,t} = \begin{bmatrix} \widetilde{\Gamma}_{k-1,t} & \mathbf{b}_{k-1,t} \\ \mathbf{0}'_{k-1} & 1 \end{bmatrix}, \quad \widetilde{\Gamma}_{k-1,t} = \mathbf{J}_{k-1,t} \Gamma_{k-1,t}, \quad k = 2, ..., p,$$

where $\Gamma_{1,t} = 1$, $J_{1,t} = (1 - \pi_{2t})$ and

$$\mathbf{b}_{k-1,t} = - \begin{bmatrix} \phi_t^{k-1,k-1} \\ \phi_t^{k-2,k-1} \\ \vdots \\ \phi_t^{2,k-1} \\ \phi_t^{1,k-1} \end{bmatrix}, \quad \mathbf{J}_{k-1,t} = \begin{bmatrix} 1 & 0 & \cdots & 0 & -\pi_{kt} \\ 0 & 1 & 0 & -\pi_{kt} & 0 \\ \vdots & \ddots & & \vdots \\ 0 & -\pi_{kt} & 0 & 1 & 0 \\ -\pi_{kt} & 0 & \cdots & 0 & 1 \end{bmatrix}$$

if k is even the central element of $\mathbf{J}_{k-1,t}$ is $(1 - \pi_{kt})$.

The Jacobian of the DL mapping function

The Jacobian of inverse Fisher transf. is straightforward, while a novel expression for $\Gamma_t = \partial \phi_t / \partial \pi'_t$ is derived \Rightarrow the last iteration of the recursion

$$\Gamma_{k,t} = \begin{bmatrix} \widetilde{\Gamma}_{k-1,t} & \mathbf{b}_{k-1,t} \\ \mathbf{0}'_{k-1} & 1 \end{bmatrix}, \quad \widetilde{\Gamma}_{k-1,t} = \mathbf{J}_{k-1,t} \Gamma_{k-1,t}, \quad k = 2, ..., p,$$

where $\Gamma_{1,t} = 1$, $\mathbf{J}_{1,t} = (1 - \pi_{2t})$ and

$$\mathbf{b}_{k-1,t} = -\begin{bmatrix} \phi_t^{k-1,k-1} \\ \phi_t^{k-2,k-1} \\ \vdots \\ \phi_t^{2,k-1} \\ \phi_t^{1,k-1} \end{bmatrix}, \quad \mathbf{J}_{k-1,t} = \begin{bmatrix} 1 & 0 & \cdots & 0 & -\pi_{kt} \\ 0 & 1 & 0 & -\pi_{kt} & 0 \\ \vdots & \ddots & \vdots \\ 0 & -\pi_{kt} & 0 & 1 & 0 \\ -\pi_{kt} & 0 & \cdots & 0 & 1 \end{bmatrix}$$

if k is even the central element of $\mathbf{J}_{k-1,t}$ is $(1 - \pi_{kt})$.

The Jacobian of the DL mapping function

The Jacobian of inverse Fisher transf. is straightforward, while a novel expression for $\Gamma_t = \partial \phi_t / \partial \pi'_t$ is derived \Rightarrow the last iteration of the recursion

$$\Gamma_{k,t} = \begin{bmatrix} \widetilde{\Gamma}_{k-1,t} & \mathbf{b}_{k-1,t} \\ \mathbf{0}'_{k-1} & 1 \end{bmatrix}, \quad \widetilde{\Gamma}_{k-1,t} = \mathbf{J}_{k-1,t}\Gamma_{k-1,t}, \quad k = 2, ..., p,$$

where $\Gamma_{1,t}=1$, $\mathbf{J}_{1,t}=(1-\pi_{2t})$ and

$$\mathbf{b}_{k-1,t} = -\begin{bmatrix} \phi_t^{k-1,k-1} \\ \phi_t^{k-2,k-1} \\ \vdots \\ \phi_t^{2,k-1} \\ \phi_t^{1,k-1} \end{bmatrix}, \quad \mathbf{J}_{k-1,t} = \begin{bmatrix} 1 & 0 & \cdots & 0 & -\pi_{kt} \\ 0 & 1 & 0 & -\pi_{kt} & 0 \\ \vdots & \ddots & & \vdots \\ 0 & -\pi_{kt} & 0 & 1 & 0 \\ -\pi_{kt} & 0 & \cdots & 0 & 1 \end{bmatrix}$$

if k is even the central element of $\mathbf{J}_{k-1,t}$ is $(1 - \pi_{kt})$.

We may want to discipline the algorithm so to have a bounded mean:

$$\mu_t = rac{\phi_{0t}}{1 - \sum_{j=1}^p \phi_{jt}} \in (a; b).$$

We impose the following transformation

$$\phi_{0t} = \frac{a + b \exp(\alpha_{0t})}{1 + \exp(\alpha_{0t})} \left(1 - \sum_{j=1}^{p} \phi_{j,t} \right),$$

and the Jacobian of this transformation is also derived.

We may want to discipline the algorithm so to have a bounded mean:

$$\mu_t = rac{\phi_{0t}}{1-\sum_{j=1}^p \phi_{jt}} \in (extsf{a}; extsf{b}).$$

We impose the following transformation

$$\phi_{0t} = \frac{a + b \exp(\alpha_{0t})}{1 + \exp(\alpha_{0t})} \left(1 - \sum_{j=1}^{p} \phi_{j,t}\right),$$

and the Jacobian of this transformation is also derived.

Application to the US inflation

We model the quarterly US CPI inflation 1955q1:2012q4

 $\pi_{t} = \phi_{0,t} + \phi_{1,t}\pi_{t-1} + \dots + \phi_{p,t}\pi_{t-p} + \epsilon_{t}, \quad \epsilon_{t} \sim IID(0,\sigma_{t}^{2})$

Delle Monache and Petrella (2013)

9-11 January, 2014 14 / 1

Application to the US inflation

We model the quarterly US CPI inflation 1955q1:2012q4

 $\pi_t = \phi_{0,t} + \phi_{1,t}\pi_{t-1} + \dots + \phi_{p,t}\pi_{t-p} + \epsilon_t, \quad \epsilon_t \sim IID(0,\sigma_t^2)$

Application to the US inflation

We model the quarterly US CPI inflation 1955q1:2012q4

$\pi_t = \phi_{0,t} + \phi_{1,t}\pi_{t-1} + \dots + \phi_{p,t}\pi_{t-p} + \epsilon_t,$	$\epsilon_t \sim IID(0, \sigma_t^2)$
--	--------------------------------------

				Normal					
	Trend	Trend-B	AR(1)	AR(1)-B	AR(2)	AR(2)-B	AR(4)	AR(4)-B	
κ_c	0.3367	0.3547	0.0407	0.0387	0.0479	0.0286	0.0325	0.0239	
	(0.0480)	(0.0190)	(0.0048)	(0.0039)	(0.0027)	(0.0029)	(0.0028)	(0.0021)	
κ_{σ}	0.1479	0.1910	0.1127	0.1341	0.1044	0.1484	0.0806	0.1036	
	(0.0277)	(0.0189)	(0.0180)	(0.0225)	(0.0128)	(0.0293)	(0.0064)	(0.0142)	
LogLik	-561.9535	-573.3571	-546.0505	-535.0638	-554.6153	-535.9258	-555.9525	-539.2061	
AIC	1131.9071	1154.7142	1102.1009	1080.1277	1121.2306	1083.8516	1127.9050	1094.4123	
BIC	1146.1498	1168.9570	1119.9044	1097.9311	1142.5946	1105.2156	1156.3905	1122.8977	
	Student-t								
	Trend	Trend-B	AR(1)	AR(1)-B	AR(2)	AR(2)-B	AR(4)	AR(4)-B	
κ_c	0.5415	0.1841	0.0452	0.0367	0.0310	0.0366	0.0413	0.0286	
	(0.0115)	(0.0058)	(0.0035)	(0.0038)	(0.0013)	(0.0043)	(0.0043)	(0.0025)	
κ_{σ}	0.1632	0.2461	0.1445	0.2046	0.1620	0.1804	0.1520	0.1789	
	(0.0105)	(0.1131)	(0.0096)	(0.0633)	(0.0116)	(0.0497)	(0.0505)	(0.0122)	
v	5.7577	4.8640	4.5656	5.3994	5.3317	5.0520	4.6766	4.8111	
	(0.0876)	(0.4650)	(0.0827)	(0.4189)	(0.0675)	(0.4380)	(0.4650)	(0.0808)	
LogLik	-521.8818	-548.3469	-513.6383	-512.7556	-519.5567	-514.3814	-515.5358	-508.2651	
AIC	1053.7637	1106.6937	1039.2766	1037.5111	1053.1134	1042.7628	1049.0716	1034.5302	
BIC	1071.5671	1124.4972	1060.6407	1058.8752	1078.0381	1067.6876	1081.1177	1066.5763	

Delle Monache and Petrella (2013)

メロン メロン メヨン メヨ

Delle Monache and Petrella (2013)

Adaptive Models and Heavy Tails

100

Inflation Persistence: sum of ARs coeffs

Delle Monache and Petrella (2013)

Adaptive Models and Heavy Tails

)00

Delle Monache and Petrella (2013)

Adaptive Models and Heavy Tails

190

Point Forecast 1984q1-2012q4

	RMSFE			MAFE			
	h=1	h=4	h=8	h=1	h=4	h=8	
			Normal				
Trend	2.2259	2.4902	2.4748	1.3787	1.6961	1.8652	
	_	_	_	-	_	_	
Trend-B	0.8550	0.8444	0.8665	0.8909	0.8537	0.8391	
	(0.0314)	(0.0071)	(0.1668)	(0.0677)	(0.0396)	(0.0649)	
AR(1)	0.9294	0.8547	0.9097	0.9648	0.8921	0.8703	
	(0.3795)	(0.0423)	(0.4582)	(0.6312)	(0.1934)	(0.2954)	
AR(1)-B	0.9131	0.8052	0.8137	0.9413	0.7723	0.7381	
	(0.2868)	(0.0048)	(0.1117)	(0.4127)	(0.0014)	(0.0152)	
AR(2)	0.9446	0.8224	0.7996	0.9629	0.8040	0.7589	
	(0.1138)	(0.0040)	(0.0613)	(0.4258)	(0.0018)	(0.0142)	
AR(2)-B	0.9603	0.8426	0.7949	0.9535	0.8031	0.7388	
	(0.4839)	(0.0037)	(0.0620)	(0.4545)	(0.0013)	(0.0113)	
AR(4)	0.9627	0.8466	0.8116	0.9368	0.8147	0.7536	
	(0.4609)	(0.0054)	(0.0539)	(0.2372)	(0.0054)	(0.0073)	
AR(4)-B	0.9307	0.8562	0.8095	0.9042	0.8319	0.7599	
	(0.0745)	(0.0053)	(0.0650)	(0.0818)	(0.0065)	(0.0114)	
			C				
T . 1	0.0007	0.0245	Student-t	0.0221	0.0000	0.0077	
Trend	(0.6426)	(0.0740)	(0.3665)	(0.2497)	(0.0000)	(0.2410)	
Treed D	(0.0430)	(0.0742)	(0.3005)	(0.3407)	(0.0999)	(0.2410)	
Trend-D	(0.9270	(0.0206)	(0.3000)	(0.41E0)	(0.1020)	(0.2106)	
A D(1)	(0.2699)	(0.0300)	(0.3999)	(0.4150)	(0.1929)	(0.2100)	
AN(1)	(0.0720)	(0.0422)	(0.4062)	(0.9200	(0.1270)	(0.1952)	
AP(1) P	(0.0729)	0.0230)	(0.4002)	0.2997)	0.2056	0.1655)	
AII(1)-D	(0.1122)	(0.0100)	(0.1770)	(0.1597)	(0.0000)	(0.0272)	
$\Delta R(2)$	0.0451	0.8803	0.0203	0.1307)	0.8584	0.8482	
AII(2)	(0.1081)	(0.0035)	(0.5327)	(0.2302)	(0.0125)	(0.1081)	
AR(2)-B	0.8712	0 7970	0.8079	0.9147	0.7835	0 7468	
(2) 0	(0.0813)	(0.0035)	(0.1154)	(0.1790)	(0.0021)	(0.0238)	
AR(4)	0.9435	0.8429	0.8398	0.9369	0.8355	0.7815	
	(0.1996)	(0.0104)	(0.1052)	(0.2771)	(0.0322)	(0.0088)	
AR(4)-B	0.9413	0.8480	0.8270	0.9239	0.8258	0.7733	
() =	(0.1603)	(0.0092)	(0.0634)	(0.1878)	(0.0173)	(0.0053)	

- The log-score: the density forecast is evaluated at the realization y_{t+h} and it gives higher score to the density forecast with higher prob of y_{t+h} .
- Obensity forecasts are ranked according to the log-score and test for the difference between log-scores by Amisano and Giacomini (2007).
- PIT (Prob Integral Transf): the cdf of candidate density is evaluated at $y_{t+h} \Rightarrow$ we have good approx of the "true" density if the PITs are IIDU(0,1).
- Diebold (1998): visual inspection of histogram of the PITs to be U(0,1).
- Berkowitz (2001) computes the inverse normal cdf transf and then test for NID by fitting an AR(1) with intercept and then test LR₃
- Rossi and Sekhposyan (2013) propose a non-parametric test that considers parameters uncertainty.

- The log-score: the density forecast is evaluated at the realization y_{t+h} and it gives higher score to the density forecast with higher prob of y_{t+h}.
- Obensity forecasts are ranked according to the log-score and test for the difference between log-scores by Amisano and Giacomini (2007).
- ◎ PIT (Prob Integral Transf): the cdf of candidate density is evaluated at $y_{t+h} \Rightarrow$ we have good approx of the "true" density if the PITs are IIDU(0,1).
- Diebold (1998): visual inspection of histogram of the PITs to be U(0,1).
- Serkowitz (2001) computes the inverse normal cdf transf and then test for NID by fitting an AR(1) with intercept and then test LR₃
- Rossi and Sekhposyan (2013) propose a non-parametric test that considers parameters uncertainty.

- The log-score: the density forecast is evaluated at the realization y_{t+h} and it gives higher score to the density forecast with higher prob of y_{t+h}.
- Obensity forecasts are ranked according to the log-score and test for the difference between log-scores by Amisano and Giacomini (2007).
- PIT (Prob Integral Transf): the cdf of candidate density is evaluated at $y_{t+h} \Rightarrow$ we have good approx of the "true" density if the PITs are IIDU(0,1).
- Diebold (1998): visual inspection of histogram of the PITs to be U(0,1).
- Serkowitz (2001) computes the inverse normal cdf transf and then test for NID by fitting an AR(1) with intercept and then test LR_3
- Rossi and Sekhposyan (2013) propose a non-parametric test that considers parameters uncertainty.

- The log-score: the density forecast is evaluated at the realization y_{t+h} and it gives higher score to the density forecast with higher prob of y_{t+h}.
- Obensity forecasts are ranked according to the log-score and test for the difference between log-scores by Amisano and Giacomini (2007).
- OPIT (Prob Integral Transf): the cdf of candidate density is evaluated at y_{t+h} ⇒ we have good approx of the "true" density if the PITs are IIDU(0,1).
- Diebold (1998): visual inspection of histogram of the PITs to be U(0,1).
- Serkowitz (2001) computes the inverse normal cdf transf and then test for NID by fitting an AR(1) with intercept and then test LR₃
- Rossi and Sekhposyan (2013) propose a non-parametric test that considers parameters uncertainty.

- The log-score: the density forecast is evaluated at the realization y_{t+h} and it gives higher score to the density forecast with higher prob of y_{t+h}.
- Obensity forecasts are ranked according to the log-score and test for the difference between log-scores by Amisano and Giacomini (2007).
- PIT (Prob Integral Transf): the cdf of candidate density is evaluated at y_{t+h} ⇒ we have good approx of the "true" density if the PITs are IIDU(0,1).
- O Diebold (1998): visual inspection of histogram of the PITs to be U(0,1).
- Berkowitz (2001) computes the inverse normal cdf transf and then test for NID by fitting an AR(1) with intercept and then test LR₃
- Rossi and Sekhposyan (2013) propose a non-parametric test that considers parameters uncertainty.

Density forecast

	No	ormal		Stu	Student-t			
	Av Log Score	LR $\kappa_{\alpha,P}^{CS}$		Av Log Score	LR	$\kappa_{\alpha,P}^{CS}$		
Trend	-2.8237	0.0001	5.7760	-1.5999	0.5694	0.9923		
Trend-B	-3.0188	0.0001	6.6422	-1.6353	0.0124	1.5210		
AR(1)	-2.7127	0.0055	4.0960	-1.6065	0.6715	0.1322		
AR(1)-B	-2.6537	0.3831	4.7610	-1.6223	0.5172	0.5760		
AR(2)	-2.7784	0.0129	4.7610	-1.6145	0.1988	1.1560		
AR(2)-B	-2.6932	0.0121	4.7610	-1.6146	0.3501	0.4623		
AR(2)	-2.9495	0.1794	4.4223	-1.6313	0.2424	0.9923		
AR(4)-B	-2.7859	0.0822	4.0960	-1.6603	0.1826	0.9923		

Density forecast: inspection of the PITs

Density forecast: inspection of the PITs-RS test

	A I I														
	Normal								Student-t						
	Trend	Trend-B	AR(1)	AR(1)-B	AR(2)	AR(2)-B	AR(4)	AR(4)-B	Trend	Trend-B	AR(1)	AR(1)-B	AR(2)	AR(2)-B	AR(4)
Normal															
Trend-B	0.003														
AR(1)	0.018	0.000													
AR(1)-B	0.033	0.000	0.167												
AR(2)	0.158	0.000	0.183	0.101											
AR(2)-B	0.024	0.000	0.741	0.605	0.025										
AR(4)	0.077	0.460	0.008	0.010	0.021	0.008									
AR(4)-B	0.548	0.003	0.298	0.148	0.893	0.141	0.003								
Student-t															
Trend	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000							
Trend-B	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0 526						
AR(1)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.882	0 569					
AR(1)-R	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.666	0.826	0 670				
AR(2)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.721	0.703	0.832	0.870			
AD(2) D	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.721	0.703	0.002	0.019	0.000		
AD(4)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.750	0.097	0.004	0.000	0.990	0.771	
AR(4)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.490	0.950	0.039	0.683	0.070	0.771	
АК(4)-В	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.243	0.717	0.351	0.557	0.331	0.452	0.190

- We propose a score-driven approach for TVPs models and we concentrate on the AR model
- We show how the implied algorithms are related to the learning algorithms
- We extend existing adaptive algorithms to the case of changes in volatility and heavy-tails based on the score-driven criterion
- We show how to impose restrictions on the time-varying parameters
- O Application to the US inflation leads to interesting results in fitting and forecasting ⇒ the effects of Student-t distribution for density forecast
- In Future research: multivariate VARs and skew-t distribution

Summary and future research

We propose a score-driven approach for TVPs models and we concentrate on the AR model

- We show how the implied algorithms are related to the learning algorithms.
- We extend existing adaptive algorithms to the case of changes in volatility and heavy-tails based on the score-driven criterion
- We show how to impose restrictions on the time-varying parameters
- O Application to the US inflation leads to interesting results in fitting and forecasting ⇒ the effects of Student-t distribution for density forecast
- Inture research: multivariate VARs and skew-t distribution

- We propose a score-driven approach for TVPs models and we concentrate on the AR model
- **②** We show how the implied algorithms are related to the learning algorithms
- We extend existing adaptive algorithms to the case of changes in volatility and heavy-tails based on the score-driven criterion
- We show how to impose restrictions on the time-varying parameters
- Application to the US inflation leads to interesting results in fitting and forecasting ⇒ the effects of Student-t distribution for density forecast
- Inture research: multivariate VARs and skew-t distribution

- We propose a score-driven approach for TVPs models and we concentrate on the AR model
- **2** We show how the implied algorithms are related to the learning algorithms
- We extend existing adaptive algorithms to the case of changes in volatility and heavy-tails based on the score-driven criterion
- **O** We show how to impose restrictions on the time-varying parameters
- O Application to the US inflation leads to interesting results in fitting and forecasting ⇒ the effects of Student-t distribution for density forecast
- Future research: multivariate VARs and skew-t distribution

- We propose a score-driven approach for TVPs models and we concentrate on the AR model
- **(2)** We show how the implied algorithms are related to the learning algorithms
- We extend existing adaptive algorithms to the case of changes in volatility and heavy-tails based on the score-driven criterion
- **O** We show how to impose restrictions on the time-varying parameters
- Application to the US inflation leads to interesting results in fitting and forecasting ⇒ the effects of Student-t distribution for density forecast
- **O** Future research: multivariate VARs and skew-t distribution